

Regulating Exposures to NORM in the WA Mining Industry

Martin Ralph PhD CRadPro

ECU Student # 10446521

https://ro.ecu.edu.au/theses/2642

Today's Presentation

- Radiation and radioactivity: some principles
- Radiation exposure and risk
- NORs in the WA mining industry
- Research project phases and findings
- The WA regulatory framework
- A peek over the horizon emerging challenges
- Questions

Radiation and Radioactivity

The SI unit of measurement for Activity is the becquerel (Bq).

 It is a measure of the quantity of radioactive material, but does not indicate how many, or what type of emissions are being released from the nucleus.

The Bq is equivalent to one nuclear disintegration per second.

- <u>Activity Concentration</u> relates to the concentrations of radioactivity within a substance:
 - Solids: Becquerels per gram (Bq/g)
 - Liquids: Becquerels per litre (Bq/l)
 - Airborne: Becquerels per cubic metre (Bq/m³)

Radiation and Radioactivity: Half Life (T_{1/2})

EDITH COWAN

AUSTRALIA

- The length of time for half of a given quantity of radioactive atoms to undergo radioactive decay
- The half life is constant for a specific radionuclide.

^{2023:} Radiation Management in Mines – Occupational Health Society (WA)

Radiation and radioactivity: Measurement

Radiation doses are a function of the transfer of energy to the body, and are measured by 3 fundamental parameters:

- 1. Exposure:
 - Measured in coulombs per kilogram (C/kg)
- 2. Absorbed Dose:
 - Measured in grays (Gy)
 - In mining applications, dose <u>rate</u> is measured in microGrays per hour (uGy/h).

3. Dose Equivalent:

- Measured in Sieverts (Sv)
- It makes allowance for the type of radiation (the Quality Factor) and the radiosensitivity of the part of the body exposed.
- In mining applications, dose equivalent is measured in milliSieverts (mSv).

Radiation exposure and risk: Doses in perspective

Dose Equivalent (mSv)	Effect			
10,000	100% mortality			
6,000	Early death			
4,000	50% mortality			
2,000	Threshold for early death			
500	Nausea & reduced white blood cell count			
131	NATURAL <u>annual</u> background dose _{peak} in Ramsar, Iran			
100	Limit for exposure of a radiation worker over a <u>5</u> year period.			
20	Derived Limit for exposure of a radiation worker in <u>1</u> year*			
5	Whole body CT scan, single			
2	Average annual exposure from NATURAL radiation			
1	Limit of exposure of a 'member of the public' in a single year			
0.05	Exposure from 7 hour flight			
0.02 - 0.10	Typical sequence of chest x-rays			

Radiation and Risk: Linear Non-Threshold Hypothesis

Outcome = every exposure carries a risk ...

AUSTRALIA

Radiation Exposure and Risk

EDITH COWAN

ARPANSA (2018) states:

- Risk from <u>acute</u> exposures (as might occur with accidents)
 - = 1 in 10,000 per mSv
- Risk from chronic exposures (as occur in the mining industry)
 - = 1 in 20,000 per mSv
 - Therefore, at 20 mSv annual derived limit, risk is equivalent to <u>1 in 1000</u>
- United Kingdom Health and Safety Executive risk model* suggests that this level of risk is intolerable …

*

Cited in Hopkins, Safety Culture and Risk: the organisational causes of disasters (2005)

Ionizing radiation in mining

- Electromagnetic
 - X-rays; or
 - Gamma (γ) rays.
- Particulate
 - Alpha (α) particles;
 - Ionised Helium Nucleus (2He⁴⁺⁺)
 - Beta (B) particles;
 - High Speed electron from neutron (₀n¹) decay

What happens during the decay process?

- Thorium-232 decays via emission of an alpha particle
- The mass number decreases by 4
- The atomic number decreases by 2
- A new atom of radium is formed

The First Decays of Thorium-232

Th-232 will first transmute into Ra-228 through an *alpha decay*. Ra-228 will then transmute to Ac-228 through a *beta-minus decay*.

- 2) The newly formed atom of radium-228 decays via beta emission
- The mass number remains the same
- But the atomic number increases by 1
- A new atom of actinium is formed ...

What are mining NORs?

- The primordial radionuclides
 - Uranium (²³⁸U series) and
 - Thorium (²³²Th series)
- Naturally radioactive
- Heavy metal toxins
 - Will cause death by poisoning before inducing harm via radioactivity

Consist of complex series' including many radioactive decay products

NOR: The U-238 Decay Series

What are mining NORs?

- The primordial radionuclides
 - Uranium (²³⁸U series) and
 - Thorium (²³²Th series)
- Naturally radioactive
- Heavy metal toxins
 - Will cause death by poisoning before inducing harm via radioactivity
- Consist of complex series' including many radioactive decay products
- Occur in trace concentrations in rocks & soils in the earth's crust
 - WA's geology is replete with minerals that contain ²³⁸U and ²³²Th
 - Darling Scarp 10 x more activity than the global crustal average

WA hosts:

238

- >60 known potential uranium mines EDIT
 - Most deposits adjacent to gold and base metal mines
- Worlds largest mineral sands producer
 ²³²Th
 47 known deposits of monazite; and
 - 10 deposits of xenotime
 - Many coincident with base metal operations
 - Significant sources of rare earth elements
 - Tantalum-lithium projects
 - Associated with NOR-contaminated groundwater

Why is NORM Important?

- 'In the past the mining and extraction industries have been associated with the highest individual occupational exposures to [NORs]' Steinhausler (1993, p.38)
- Excess of cancer incidence and / or respiratory system illness observed in studies of mine workers around the world...

Timeline - Radiation Protection in WA Mines

Emerging Awareness

- Monazite production increases.
- Fed. 'Mining' Code implemented.
- Radiation Safety Act prevails.

In the mid to late 1980's the maximum dose in the mining industry in WA was $\sim 165 \text{ mSv}$

and the mean dose, received by 270 designated radiation workers was 31 mSv.

80% of the dose was delivered via inhalation of Long Lived Alpha particle emitters in radioactive dusts.

Rn, Tn and their progeny were not included in dose estimates ...

Media Coverage: Was the hysteria warranted?

- The discovery that tailings from a mineral sands processing plant had been used as landfill in Capel, a town in southern Western Australia, indicated the need for a survey of the gamma radiation levels within the town site.
 - Eleven houses were found to have elevated backgrounds and a further 27 residential properties had elevated levels outside the house.
 - The highest dose rate recorded in a residential area was 4µSv per hour*
 - Radioactivity in mineral sands in Western Australia
 - King, Toussaint and Hutchinson (1983)

* Equivalent to approximately <u>35mSv</u> per year.

The annual limit for a member of the public is $\underline{1mSv}$.

Timeline - Radiation Protection in WA Mines EDITH COWAN **Community Concern** Some workers doses >150 mSv. Dramatic reduction in DAC's. Interim Mines Radiation Committee. 2012-13: Boswell withdrawn 1994: Monazite 2021: 1966: RCWA advises MSI 1984: Winn 2008: IAEA Global First annual reports 1978: RCWA begins that monazite is Report mining dose review using revised DCFs. inspections of MSI radioactive 2000's -1983-90: 1970's 1980's 1990's 2020's Intense media scrutiny 2010's 20 AL = 20mSvAL = 50 mSvAL = 50mSv<u>AL</u> = 50+ mSv <u>AL = 20</u> mSv 1977: ALARA 2004-5: Boswell dose 2022-23: 1982: Mineral 1988: ICRP 2 2018-19: proclaimed Sands Code of assessment system NORM sites = 34 principle superseded. ICRP 137 & 141 formalised Practice DCFs revised released DCFs decrease review published **Emerging Awareness** · Monazite production increases. · Fed. 'Mining' Code implemented. · Radiation Safety Act prevails.

<u>AU</u>STRALIA

Research Question

Given the rapidly changing geopolitical landscape for the supply of critical minerals (including uranium) and Western Australia's unique lithology:

"what is the potential for radiation exposures from NORs to the significant increased workforce, and is the regulatory framework fit-forpurpose to ensure radiation doses are kept as low as reasonably achievable?"

Research Phase 1: Meta-analysis of historical data

- Systematic monitoring of mine worker doses commenced in **1977**
- Prior to my research, the last report on mine worker occupational radiation exposures was compiled in 1995 (Hewson, 1996a).
- Of the 220 annual reports in the intervening period (until 2018-19) only 2 could not be located:
 - A commendable compliance rate of **99.1%**
- Although some demographic data from the late 1970's and early 1980's is not available, the historical record from ~1984 is remarkably intact...

Research Phase 1: Meta-analysis of historical data

Parameter	1977 to 2018-19
Reporting Entities (Site.years)	355
Reports Assessed	335
Sum of workforce by year ^[2]	34,240
Maximum dose (mSv)	163.4
Collective dose (man.mSv)	108,850
Mean Worker dose (mSv y ⁻¹) ^[5]	3.2
0 and 1.0mSv	10,811
1.01 and 2.0mSv	1,566
2.01 and 3.0mSv	668
3.01 and 4.0mSv	321
4.01 and 5.0mSv	144
Workers receiving less than 5.01mSv ^[6]	29,898
Workers receiving between 5.01 and 10mSv	1,340
Workers receiving greater than 10.01mSv ^[7]	745

Research Phase 2: Calculating Internal Dose

ICRP develops dose coefficients to simplify the calculation of <u>equivalent</u> <u>dose</u> and <u>effective dose</u> for inhaled or ingested radionuclides.

In simplest terms, calculating the dose from an intake involves multiplying the total amount inhaled or ingested (e.g. in Bq) by the right dose coefficient:

Effective dose (mSv) = intake (Bq) × <u>dose coefficient (mSv/Bq</u>)

The dose coefficient depends on the radionuclide and:

- Whether it's inhaled or ingested
- The particle size (for inhalation)
- The chemical form

http://icrpaedia.org/Calculating_Doses_from_Intakes_of_Radionuclides

Research Phase 2: Internal Dose from Rn & RnP

- 'Radon gas is by far the most important source of ionising radiation amongst those that are of natural origin ... radon is the second [highest] cause of lung cancer in the general population after smoking.'
- *...there is no known threshold below which radon exposure presents no risk.* Even low concentrations of radon can result in a small increase in the risk of lung cancer'

World Health Organisation (2009)

Dose coefficients for radon, thoron and their progeny were revised in 2018

Research Phase 2: Internal Dose from Rn & RnP

 Impact of revised dose coefficients for Radon and Progeny on doses received by WA underground mine workers?

Commodity	Hewson	n and Ralph (F=0.5)	(1994)	2020 Data (F=0.52)			
	Workforce Population	Mean Dose (mSv)	Collective dose (man.mSv)	Workforce Population	Mean Dose (mSv)	Collective dose (man.mSv)	
Gold	1,075	1.3	1,400	6,610	1.61	10,642	
Nickel / Gold	697	0.8	560	830	0.87	722	
Coal	297	2.9	860	-	-	-	
Lead / Zinc	122	0.7 [1]	85	860	2.22	1,909	
Diamonds	_	-	-	297	1.33 [2]	396	
Total	2,173		2,905 ^[3]	8,597 [4]		13,669	

7767 underground miners receive doses above the regulatory intervention level

Research Findings: Contribution from Rn & RnP

Research Phase 3: Dose Conversion Factors

	DCF by Particle Size (mSvBq _a ⁻¹)						
Particle	2	³² Th decay serie	s	²³⁸⁺²³⁵ U decay series			
Size	A NORM-5	B ICRP-137 & 141	Change, as a ratio B : A	A NORM-5	B ICRP-137 & 141	Change, as a ratio B : A	
1 μm	0.0113	0.0290	2.6	0.0050	0.0143	2.9	
5 µm	0.0080	0.0167	2.1	0.0035	0.0084	2.4	
10 µm	0.0047	0.0090	1.9	0.0022	0.0046	2.1	

- Dose Conversion Factors are derived from dose coefficients.
- Research forecast WA worker doses increase by a factor of between 0.74 and 1.26 times from those reported in 2018-19.
- Maximum annual dose forecast to increase from 4.4mSv to 7.9mSv.

Research Phase 4: 2019-20 Annual Reports

- 19 reporting entities required to submit annual reports submitted
- 1963 total workers
 - 323 "monitored workers"
 - 16.5% of total workforce monitored
- Mean annual dose 1.1mSv
- Maximum annual dose 6.0mSv
 - 4.4 mSv in 2018-19 increase ~36%
 - First time for 20 years that annual doses have exceeded 5 mSv
- Questionable veracity of dose assessments
 - 0.37 samples per worker (declining from 3.0 in 1995-96)

Impact of DCFs on DACs

Research Phase 5: Trend Analysis (1)

Research Phase 5: Trend Analysis (2)

Field Research: Managing Radioactive Waste

Radium Affinity for Steelwork (especially scale) and Polonium volatility

Field Research: Managing Radioactive Waste

Field Research: Managing Radioactive Waste

Results

Summary of Field Trial Results

	²³² Thorium series (Bqkg ⁻¹)		²³⁸ Uranium series (Bqkg ⁻¹)			Total Activity
Parameter	²²⁸ Ac	²²⁸ TI	²³⁴ Th	²¹⁴ Pb	²¹⁰ Pb	(Bqkg ⁻¹) ¹
Mean of 2 scales	2,147 (<u>+</u> 225)	2,682 (<u>+</u> 159)	<610	2,253 (<u>+</u> 231)	17,767 (<u>+</u> 3,787)	25,459 (<u>+</u> 3,804)
Mean of 4 top filtrates	1	3	<4 ³	3	203 (<u>+</u> 106)	214 (<u>+</u> 106)
Scale mean + top filtrate mean	2,148 (<u>+</u> 225)	2,685 (<u>+</u> 159)	<614 ³	2,256 (<u>+</u> 231)	17,970 (<u>+</u> 3,788)	25,673 (<u>+</u> 3,805)
Retention in SFD: Top Filtrate (%)	100 <u>+</u> 14.8	99.9 <u>+</u> 8.4	99.3	99.9 <u>+</u> 14.5	98.9 <u>+</u> 29.6	99.2 <u>+</u> 20.9
Mean of 4 bottom filtrates	70 (<u>+</u> 12)	92 (<u>+</u> 18)	<6 ³	79 (<u>+</u> 17)	3,115 (<u>+</u> 1,290)	3,362 (<u>+</u> 1,290)
Scale mean + bottom filtrate mean	2,217 (<u>+</u> 225)	2,774 (<u>+</u> 160)	<616 ³	2,332 (<u>+</u> 232)	20,882 (<u>+</u> 4,001)	28,821 (<u>+</u> 4,017)
Retention in SFD: Bottom Filtrate (%)	96.8 <u>+</u> 14.1	96.7 <u>+</u> 8.0	99.0	96.6 <u>+</u> 13.8	85.1 <u>+</u> 24.4	88.3 <u>+</u> 18.0
Mean of 8 filtrate samples	36 (<u>+</u> 12)	47 (<u>+</u> 18)	<5 ³	41 (<u>+</u> 17)	1,537 (<u>+</u> 1,294)	1,666 (<u>+</u> 1,294)
Scale mean + filtrate mean	2,183 (<u>+</u> 225)	2,729 (<u>+</u> 160)	<615 ³	2,294 (<u>+</u> 232)	19,304 (<u>+</u> 4,002)	27,125 (<u>+</u> 4,018)
Overall retention in SFD (%)	98.4 <u>+</u> 14.5	98.3 <u>+</u> 8.2	99.2	98.2 <u>+</u> 14.1	92.0 <u>+</u> 27.4	93.9 <u>+</u> 19.8

The Radiation Protection Framework

IAEA General Safety Requirements: Radiation protection and safety of radiation sources (GSR3, 2014)

2.14. The government shall ensure that adequate arrangements are in place for the protection of people and the environment, both now and in the future, against harmful effects of ionizing radiation, without unduly limiting the operation of facilities or the conduct of activities that give rise to radiation risks. This shall include arrangements for the protection of people of present and future generations and populations remote from present facilities and activities.

Australian Regulatory Framework

West Australian Regulatory Framework

AUSTRALIA EDITH COWAN

WHS (Mines) Regulations: Overview

NORM Covered in Part 10.2, Division 3, Subdivision 3B Regulations 6411 to 641Y

Risk based approach to application of regulations: Radioactivity criteria and worker (public) dose criteria

Invokes Federal ARPANSA document RPS-9

Invokes national dose limits

- Radiation Management Plan (RMP)
- Radioactive Waste Management Plan (RWMP)
- Radiation Safety Officer (NORM).

r.641K – Meaning of radioactive material

Activty concentration >= 1 Bqg⁻¹.

Any part of the mining process, including residues and tailings streams ...

<u>All</u> mineral sands products exceed the **1** Bqg⁻¹ criteria ...

Operations pursuing rare earth or pegmatite-hosted lithium minerals may exceed the 1 Bqg⁻¹ criteria ...

WHS (Mines) Regulations - r.641L

Risk-based approach applies to radiation protection regulations

If the 1 Bqg⁻¹ is exceeded, doses to workers or public must be likely to exceed the limits in r. 641L (b)(i) or (ii) for the regulations to apply

Onus is on the mine operator to demonstrate to the regulator:

- Radioactive materials are not encountered; and
- Doses to workers are not likely to exceed 1 mSv per year; and
- Doses to the public are not likely to exceed 0.5 mSv per year.

WA's nascent uranium industry challenge

4 approved uranium projects

1 project ~290km north east of Kalgoorlie is well advanced.

Media announcements suggest it will be shovel-ready by Q2 2024.

Regulatory agencies will be under duress once the project commences.

WA's rare earth elementchallenge

Most rare earths deposits in WA contain NORs (some very elevated)

168 WA-based, ASX-listed mining companies with REE in their portfolio

(https://stockhead.com.au/resources/bargain-barrel-10-cheap-asx-rare-earths-stocks-to-jump-into-right-now)

54* exploration operations have made announcements since 1/7/2022... meaning geologists and exploration teams are in the field now!

• * As at 25/11/2022

Research Thesis

Towards establishing a fit-for-purpose regulatory framework for radiation protection in Western Australia's mining industry: Evaluating mine worker exposures to naturally occurring radionuclides.

listed on Research Online at https://ro.ecu.edu.au/theses/2642

Thank you ... and Questions?

miralph@our.ecu.edu.au

Research Outputs: 7 peer-reviewed journal articles

- 1. REASSESSMENT OF RADIATION EXPOSURES OF UNDERGROUND NON-URANIUM MINE WORKERS IN WESTERN AUSTRALIA
 - Published in Radiation Protection Dosimetry Volume 191, Issue 3, September 2020, Pages 272–287
- 1. IMPACTS OF REVISED DOSE COEFFICIENTS FOR THE INHALATION OF NORM-CONTAINING DUSTS ENCOUNTERED IN THE WA MINING INDUSTRY
 - Published as a Practical Matter Article in Journal of Radiological Protection, Volume 40, Number 4, 1457
- **3.** A REVIEW OF RADIATION DOSES AND ASSOCIATED PARAMETERS IN WESTERN AUSTRALIAN MINING OPERATIONS THAT PROCESS ORES CONTAINING NATURALLY OCCURRING RADIONUCLIDES FOR **2018–19**
 - Published as a Practical Matter Article in Journal of Radiological Protection, Volume 40, Number 4, 1476
- 4. MANAGING THE RADIATION EXPOSURES OF W.A. MINE WORKERS FROM NATURALLY OCCURRING RADIONUCLIDES: AN HISTORICAL OVERVIEW (PART I)
 - Published in Radiation Protection in Australia, ISSN 1444-2752, Volume 38, Number 1, Pages 53-93
- 5. MANAGING THE RADIATION EXPOSURES OF W.A. MINE WORKERS FROM NATURALLY OCCURRING RADIONUCLIDES: AN HISTORICAL OVERVIEW (PART II)
 - Published in Radiation Protection in Australia, ISSN 1444-2752, Volume 38, Number 2, Pages 4-51
- 6. A REVIEW OF RADIATION DOSES AND ASSOCIATED PARAMETERS IN WESTERN AUSTRALIAN MINING OPERATIONS (2018–20)
 - Published as a Practical Matter Article in Journal of Radiological Protection, Volume 42, Number 1, 012501
- 7. REDUCING THE ENVIRONMENTAL FOOTPRINT OF DISUSED RADIOACTIVELY CONTAMINATED STEEL MINING EQUIPMENT BY GEOTEXTILE FILTRATION OF RESIDUES FROM HIGH-PRESSURE WATER-CLEANING